3 resultados para whole-cell PCR

em WestminsterResearch - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Three human clinical strains (W9323T , X0209T and X0394) isolated from lung biopsy, blood and cerebral spinal fluid, respectively, were characterized using a polyphasic taxonomic approach. Comparative analysis of the 16S rRNA gene sequences showed the three strains belonged to two novel branches within the genus Kroppenstedtia : 16S rRNA gene sequence analysis of W9323T showed closest sequence similarity to Kroppenstedtia eburnea JFMB- ATET (95.3 %), Kroppenstedtia guangzhouensis GD02T (94.7 %) and strain X0209T (94.6 %); sequence analysis of strain X0209T showed closest sequence similarity to K . eburnea JFMB- ATET (96.4 %) and K. guangzhouensis GD02T (96.0 %). Strains X0209T and X0394 were 99.9 % similar to each other by 16S rRNA gene sequence analysis. The DNA- DNA relatedness was 94.6 %, confirming that X0209T and X0394 belong to the same species. Chemotaxonomic data for strains W9323T and X0209T were consistent with those described for the genus Kroppenstedtia : whole- cell peptidoglycan contained LL- diaminopimelic acid; the major cellular fatty acids were iso- C15 and anteiso- C15 ; and the major menaquinone was MK- 7. Different endospore morphology, carbon utilization profiles, and whole cell wall sugar patterns of strains W9323T and X0209T supported by phylogenetic analysis enabled us to conclude that the strains represent two new species within the genus Kroppenstedtia , for which the names Kroppenstedtia pulmonis sp. nov. (type strain W9323T = DSM 45752T = CCUG 68107T) and Kroppenstedtia sanguinis sp. nov. (type strain X0209T = DSM 45749T = CCUG 38657T) are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Driver mutations in the two histone 3.3 (H3.3) genes, H3F3A and H3F3B, were recently identified by whole genome sequencing in 95% of chondroblastoma (CB) and by targeted gene sequencing in 92% of giant cell tumour of bone (GCT). Given the high prevalence of these driver mutations, it may be possible to utilise these alterations as diagnostic adjuncts in clinical practice. Here, we explored the spectrum of H3.3 mutations in a wide range and large number of bone tumours (n 5 412) to determine if these alterations could be used to distinguish GCT from other osteoclast-rich tumours such as aneurysmal bone cyst, nonossifying fibroma, giant cell granuloma, and osteoclast-rich malignant bone tumours and others. In addition, we explored the driver landscape of GCT through whole genome, exome and targeted sequencing (14 gene panel). We found that H3.3 mutations, namely mutations of glycine 34 in H3F3A, occur in 96% of GCT. We did not find additional driver mutations in GCT, including mutations in IDH1, IDH2, USP6, TP53. The genomes of GCT exhibited few somatic mutations, akin to the picture seen in CB. Overall our observations suggest that the presence of H3F3A p.Gly34 mutations does not entirely exclude malignancy in osteoclast-rich tumours. However, H3F3A p.Gly34 mutations appear to be an almost essential feature of GCT that will aid pathological evaluation of bone tumours, especially when confronted with small needle core biopsies. In the absence of H3F3A p.Gly34 mutations, a diagnosis of GCT should be made with caution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ntroduction: Osteoarthritis (OA) is a degenerative joint disease affecting more than 8.5 million people in the UK. Disruption in the catabolic and anabolic balance, with the catabolic cytokine Interleukin 1 beta (IL-1β) being involved in the initiation and progression of OA (1). Melanocortin peptides (α-MSH and D[Trp8]-γ-MSH) exert their anti-inflammatory effects via activation of melanocortin receptors (MC), with both MC1 and MC3 being identified as promising candidates as novel targets for OA (2). This study aims to assess the chondroprotective and anti-inflammatory effects of the pan melanocortin receptor agonist α-MSH and MC3 agonist D[Trp8]-γ-MSH following IL-1β chondrocyte stimulation. Methods: RT-PCR/ Western Blot: Human C-20/A4 chondrocytic cell-line were cultured in 6 well plates (1x106 cells/well) and harvested to determine MC and IL-1β expression by RT-PCR, and Western Blot. Cell-Culture: Cells were cultured in 96 well plates (1x106 cells/well) and stimulated with H2O2 (0.3%), TNF-α (60 pg/ml) or IL-1β (0-5000pg/ml) for 0-72h and cell viability determined. Drug Treatment: In separate experiments cells were pre-treated with 3 μg/ml α-MSH (Sigma-Aldrich Inc. Poole, UK), or D[Trp8]-γ-MSH (Phoenix Pharmaceuticals, Karlsrhue, Germany) (all dissolved in PBS) for 30 minutes prior to IL-1β (5000pg/ml) stimulation for 6-24h. Analysis: Cell viability was determined by using the three cell viability assays; Alamar Blue, MTT and the Neutral Red (NR) assay. Cell-free supernatants were collected and analysed for Interleukin -6 (IL-6) and IL-8 release by ELISA. Data expressed as Mean ± SD of n=4-8 determination in quadruplicate. *p≤ 0.05 vs. control. Results: Both RT-PCR, and Western Blot showed MC1 and MC3 expression on C-20/A4 cells. Cell viability analysis: IL-1β stimulation led to a maximal cell death of 35% at 6h (Alamar Blue), and 40% and 75% with MTT and Neutral Red respectively at 24h compared to control. The three cell viability assays have different cellular uptake pathways, which accounts for the variations observed in cell viability in response to the concentration of IL-1β, and time. Cytokine analysis by ELISA: IL-1β (5000pg/ml) stimulation for 6 and 24h showed maximal IL-6 production 292.3 ±3.8 and 275.5 ±5.0 respectively, and IL-8 production 353.3 ±2.6 and 598.3 ±8.6 respectively. Pre-treatment of cells with α-MSH and D[Trp8]-γ-MSH caused significant reductions in both IL-6 and IL-8 respectively following IL-1β stimulation at 6h. Conclusion: MC1/3 are expressed on C-20/A4 cells, activation by melanocortin peptides led to an inhibition of IL-1β induced cell death and pro-inflammatory cytokine release.